Supervisely
AboutAPI ReferenceSDK Reference
  • 🤖What's Supervisely
  • 🚀Ecosystem of Supervisely Apps
  • 💡FAQ
  • 📌Getting started
    • How to import
    • How to annotate
    • How to invite team members
    • How to connect agents
    • How to train models
  • 🔁Import and Export
    • Import
      • Overview
      • Import using Web UI
      • Supported annotation formats
        • Images
          • 🤖Supervisely JSON
          • 🤖Supervisely Blob
          • COCO
          • Yolo
          • Pascal VOC
          • Cityscapes
          • Images with PNG masks
          • Links from CSV, TXT and TSV
          • PDF files to images
          • Multiview images
          • Multispectral images
          • Medical 2D images
          • LabelMe
          • LabelStudio
          • Fisheye
          • High Color Depth
        • Videos
          • Supervisely
        • Pointclouds
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 3D
        • Pointcloud Episodes
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 360
        • Volumes
          • Supervisely
          • .NRRD, .DCM volumes
          • NIfTI
      • Import sample dataset
      • Import into an existing dataset
      • Import using Team Files
      • Import from Cloud
      • Import using API & SDK
      • Import using agent
    • Migrations
      • Roboflow to Supervisely
      • Labelbox to Supervisely
      • V7 to Supervisely
      • CVAT to Supervisely
    • Export
  • 📂Data Organization
    • Core concepts
    • Project and Dataset
      • Create
      • Data Structure
      • Define Classes & Tags
      • Gallery & Table views
      • Collections
      • Quality Assurance & Statistics
        • Practical applications of statistics
    • MLOps Workflow
    • Team Files
    • Disk usage & Cleanup
    • Operations with Data
      • Data Filtration
        • How to use advanced filters
      • Pipelines
      • Augmentations
      • Splitting data
      • Converting data
        • Convert to COCO
        • Convert to YOLO
        • Convert to Pascal VOC
    • Data Commander
      • Clone Project Meta
  • 📝Labeling
    • Labeling Toolboxes
      • Images
      • Videos 2.0
      • Videos 3.0
      • 3D Point Cloud and Episodes (legacy)
      • 3D Point Cloud and Episodes
      • DICOM
      • Multiview images
      • Fisheye
    • Labeling Tools
      • Navigation & Selection Tools
      • Point Tool
      • Bounding Box (Rectangle) Tool
      • Polyline Tool
      • Polygon Tool
      • Brush Tool
      • Mask Pen Tool
      • Smart Tool
      • Graph (Keypoints) Tool
      • Frame-based tagging
    • Labeling Jobs
      • Labeling Queues
      • Labeling Consensus
      • Labeling Statistics
      • Labeling Quality Control
    • Labeling Performance
    • Labeling with AI-Assistance
  • 🤝Collaboration
    • Admin panel
      • Users management
      • Teams management
      • Server disk usage
      • Server trash bin
      • Server cleanup
      • Server stats and errors
    • Teams & workspaces
    • Members
    • Issues
    • Guides & exams
    • Activity log
    • Sharing
  • 🖥️Agents
    • Installation
      • Linux
      • Windows
      • AMI AWS
      • Kubernetes
    • How agents work
    • Restart and delete agents
    • Status and monitoring
    • Storage and cleanup
    • Integration with Docker
  • 🔮Neural Networks
    • Overview
    • Inference & Deployment
      • Overview
      • Supervisely Serving Apps
      • Deploy & Predict with Supervisely SDK
      • Using trained models outside of Supervisely
    • Model Evaluation Benchmark
      • Object Detection
      • Instance Segmentation
      • Semantic Segmentation
      • Custom Benchmark Integration
    • Custom Model Integration
      • Overview
      • Custom Inference
      • Custom Training
    • Solutions
      • Temporal Action Localization with MVD
    • Legacy
      • Starting with Neural Networks
      • Train custom Neural Networks
      • Run pre-trained models
  • 👔Enterprise Edition
    • Get Supervisely
      • Installation
      • Post-installation
      • Upgrade
      • License Update
    • Kubernetes
      • Overview
      • Installation
      • Connect cluster
    • Advanced Tuning
      • HTTPS
      • Remote Storage
      • Single Sign-On (SSO)
      • CDN
      • Notifications
      • Moving Instance
      • Generating Troubleshoot Archive
      • Storage Cleanup
      • Private Apps
      • Data Folder
      • Firewall
      • HTTP Proxy
      • Offline usage
      • Multi-disk usage
      • Managed Postgres
      • Scalability Tuning
  • 🔧Customization and Integration
    • Supervisely .JSON Format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Tags
      • Objects
      • Single-Image Annotation
      • Single-Video Annotation
      • Point Cloud Episodes
      • Volumes Annotation
    • Developer Portal
    • SDK
    • API
  • 💡Resources
    • Changelog
    • GitHub
    • Blog
    • Ecosystem
Powered by GitBook
On this page
  • Overview
  • Format description
  • Input files structure
  • Useful links

Was this helpful?

  1. Import and Export
  2. Import
  3. Supported annotation formats
  4. Pointcloud Episodes

KITTI 360

Overview

Easily import your point clouds with annotations in the KITTI-360 format. This converter is designed for the point cloud episodes modality. For the point cloud modality, please refer to KITTI-3D.

The original KITTI-360 is a large-scale annotated dataset recorded in the suburbs of Karlsruhe, Germany, covering 73.7 km of driving with over 320k images and 100k laser scans. It provides both 3D point clouds and 2D images with dense semantic and instance annotations across 19 classes, and maintains consistent instance IDs over time. The data, captured with a 360° sensing setup including fisheye and perspective cameras, a stereo camera, Velodyne, and SICK laser scanners, is precisely geolocalized using an IMU/GPS system.

Format description

Supported point cloud format: .bin With annotations: yes Supported annotation format: .xml Data structure: Information is provided below.

Input files structure

Example data: download ⬇️

Format directory structure:

📦KITTI-360
├──📂calibration
│   ├──📄calib_cam_to_velo.txt
│   ├──📄perspective.txt
│   └──📄...
├──📂data_2d_raw
│   ├──📂2013_05_28_drive_{seq:04}_sync
│   │   ├──📂image_{00|01}
│   │   │   ├──📂data_rect
│   │   │   │   ├──🏞️{frame:010}.png
│   │   │   │   └──🏞️...
│   │   ├──📂image_{02|03}
│   │   │   └──📂...
├──📂data_3d_raw
│   ├──📂2013_05_28_drive_{seq:04}_sync
│   │   ├──📂velodyne_points
│   │   │   ├──📂data
│   │   │   │   ├──📄{frame:010}.bin
│   │   │   │   └──📄...
├──📂data_3d_bboxes
│   ├──📂train
│   │   ├──📄2013_05_28_drive_{seq:04}_sync.xml
│   │   └──📄...
├──📂data_poses
│   ├──📂2013_05_28_drive_{seq:04}_sync
│   │   ├──📄cam0_to_world.txt
└── └── └──📄...

Information on the KITTI-360 dataset structure can be found here

Useful links

  • KITTI-360 homepage

  • KITTI-360 GitHub page

PreviousnuScenesNextVolumes

Last updated 3 months ago

Was this helpful?

🔁