Supervisely
AboutAPI ReferenceSDK Reference
  • 🤖What's Supervisely
  • 🚀Ecosystem of Supervisely Apps
  • 💡FAQ
  • 📌Getting started
    • How to import
    • How to annotate
    • How to invite team members
    • How to connect agents
    • How to train models
  • 🔁Import and Export
    • Import
      • Overview
      • Import using Web UI
      • Supported annotation formats
        • Images
          • 🤖Supervisely JSON
          • 🤖Supervisely Blob
          • COCO
          • Yolo
          • Pascal VOC
          • Cityscapes
          • Images with PNG masks
          • Links from CSV, TXT and TSV
          • PDF files to images
          • Multiview images
          • Multispectral images
          • Medical 2D images
          • LabelMe
          • LabelStudio
          • Fisheye
          • High Color Depth
        • Videos
          • Supervisely
        • Pointclouds
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 3D
        • Pointcloud Episodes
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 360
        • Volumes
          • Supervisely
          • .NRRD, .DCM volumes
          • NIfTI
      • Import sample dataset
      • Import into an existing dataset
      • Import using Team Files
      • Import from Cloud
      • Import using API & SDK
      • Import using agent
    • Migrations
      • Roboflow to Supervisely
      • Labelbox to Supervisely
      • V7 to Supervisely
      • CVAT to Supervisely
    • Export
  • 📂Data Organization
    • Core concepts
    • MLOps Workflow
    • Projects
      • Datasets
      • Definitions
      • Collections
    • Team Files
    • Disk usage & Cleanup
    • Quality Assurance & Statistics
      • Practical applications of statistics
    • Operations with Data
      • Data Filtration
        • How to use advanced filters
      • Pipelines
      • Augmentations
      • Splitting data
      • Converting data
        • Convert to COCO
        • Convert to YOLO
        • Convert to Pascal VOC
    • Data Commander
      • Clone Project Meta
  • 📝Labeling
    • Labeling Toolboxes
      • Images
      • Videos 2.0
      • Videos 3.0
      • 3D Point Clouds
      • DICOM
      • Multiview images
      • Fisheye
    • Labeling Tools
      • Navigation & Selection Tools
      • Point Tool
      • Bounding Box (Rectangle) Tool
      • Polyline Tool
      • Polygon Tool
      • Brush Tool
      • Mask Pen Tool
      • Smart Tool
      • Graph (Keypoints) Tool
      • Frame-based tagging
    • Labeling Jobs
      • Labeling Queues
      • Labeling Consensus
      • Labeling Statistics
    • Labeling with AI-Assistance
  • 🤝Collaboration
    • Admin panel
      • Users management
      • Teams management
      • Server disk usage
      • Server trash bin
      • Server cleanup
      • Server stats and errors
    • Teams & workspaces
    • Members
    • Issues
    • Guides & exams
    • Activity log
    • Sharing
  • 🖥️Agents
    • Installation
      • Linux
      • Windows
      • AMI AWS
      • Kubernetes
    • How agents work
    • Restart and delete agents
    • Status and monitoring
    • Storage and cleanup
    • Integration with Docker
  • 🔮Neural Networks
    • Overview
    • Inference & Deployment
      • Overview
      • Supervisely Serving Apps
      • Deploy & Predict with Supervisely SDK
      • Using trained models outside of Supervisely
    • Model Evaluation Benchmark
      • Object Detection
      • Instance Segmentation
      • Semantic Segmentation
      • Custom Benchmark Integration
    • Custom Model Integration
      • Overview
      • Custom Inference
      • Custom Training
    • Legacy
      • Starting with Neural Networks
      • Train custom Neural Networks
      • Run pre-trained models
  • 👔Enterprise Edition
    • Get Supervisely
      • Installation
      • Post-installation
      • Upgrade
      • License Update
    • Kubernetes
      • Overview
      • Installation
      • Connect cluster
    • Advanced Tuning
      • HTTPS
      • Remote Storage
      • Single Sign-On (SSO)
      • CDN
      • Notifications
      • Moving Instance
      • Generating Troubleshoot Archive
      • Storage Cleanup
      • Private Apps
      • Data Folder
      • Firewall
      • HTTP Proxy
      • Offline usage
      • Multi-disk usage
      • Managed Postgres
      • Scalability Tuning
  • 🔧Customization and Integration
    • Supervisely .JSON Format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Tags
      • Objects
      • Single-Image Annotation
      • Single-Video Annotation
      • Point Cloud Episodes
      • Volumes Annotation
    • Developer Portal
    • SDK
    • API
  • 💡Resources
    • Changelog
    • GitHub
    • Blog
    • Ecosystem
Powered by GitBook
On this page
  • Converting data using Supervisely Ecosystem Apps
  • Converting data using Supervisely Python SDK

Was this helpful?

  1. Data Organization
  2. Operations with Data
  3. Converting data

Convert to YOLO

PreviousConvert to COCONextConvert to Pascal VOC

Last updated 2 months ago

Was this helpful?

YOLO format is a popular, text-based format for different computer vision tasks, such as object detection, segmentation, and pose estimation.

For more information on how to import YOLO format data into Supervisely, see the guide.

Converting data using Supervisely Ecosystem Apps

  • . Transform images project in Supervisely (link to format) to YOLO v5 format and prepares downloadable .tar archive.

  • . Transform datasets from the Supervisely format to the YOLOv8 segmentation format or pose estimation format.

Converting data using Supervisely Python SDK

Easily convert your data in one line of code using the Supervisely Python SDK.

sly.convert.to_yolo() function automatically detects the input data type and converts it to Pascal VOC format. For example, you can pass a path to a project, sly.Project object or sly.Dataset object. To convert a Dataset, you need to provide the project meta information as shown in the example below.

# Project path
sly.convert.to_yolo("./sly_project", dest_dir="./result_yolo")
# Project object
sly.convert.to_yolo(project, dest_dir="./result_yolo")
# or Dataset object
sly.convert.to_yolo(dataset, dest_dir="./result_yolo", meta=project.meta)

This converter allows you to convert a project or dataset to YOLO format for detection, segmentation, and pose estimation tasks.

Project and dataset conversion works similarly and will convert all data in the same structure to YOLO format.

It supports the following geometry types:

  • detection: sly.Rectangle, sly.Bitmap, sly.Polygon, sly.GraphNodes, sly.Polyline, sly.AlphaMask

  • segmentation: sly.Polygon, sly.Bitmap, sly.AlphaMask

  • pose estimation: sly.GraphNodes

  • Convert a project to YOLO format:

# One line of code
sly.convert.to_yolo("./sly_project", dest_dir="./result_yolo")

# Or using the sly.Project object
project_fs = sly.Project("./sly_project", sly.OpenMode.READ)
project_fs.to_yolo("./result_yolo", task_type="segmentation")
  • Convert a specific dataset to YOLO format:

ds = project_fs.datasets.get("dataset_name")

sly.convert.to_yolo(ds, dest_dir="./result_yolo", meta=project_fs.meta)
# Or using the sly.Dataset object
ds.to_yolo(project_fs.meta, dest_dir="./result_yolo")
📂
Import from YOLO
Convert Supervisely to YOLO v5 format
Export to YOLOv8 format