Supervisely
AboutAPI ReferenceSDK Reference
  • 🤖What's Supervisely
  • 🚀Ecosystem of Supervisely Apps
  • 💡FAQ
  • 📌Getting started
    • How to import
    • How to annotate
    • How to invite team members
    • How to connect agents
    • How to train models
  • 🔁Import and Export
    • Import
      • Overview
      • Import using Web UI
      • Supported annotation formats
        • Images
          • 🤖Supervisely JSON
          • 🤖Supervisely Blob
          • COCO
          • Yolo
          • Pascal VOC
          • Cityscapes
          • Images with PNG masks
          • Links from CSV, TXT and TSV
          • PDF files to images
          • Multiview images
          • Multispectral images
          • Medical 2D images
          • LabelMe
          • LabelStudio
          • Fisheye
          • High Color Depth
        • Videos
          • Supervisely
        • Pointclouds
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 3D
        • Pointcloud Episodes
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 360
        • Volumes
          • Supervisely
          • .NRRD, .DCM volumes
          • NIfTI
      • Import sample dataset
      • Import into an existing dataset
      • Import using Team Files
      • Import from Cloud
      • Import using API & SDK
      • Import using agent
    • Migrations
      • Roboflow to Supervisely
      • Labelbox to Supervisely
      • V7 to Supervisely
      • CVAT to Supervisely
    • Export
  • 📂Data Organization
    • Core concepts
    • MLOps Workflow
    • Projects
      • Datasets
      • Definitions
      • Collections
    • Team Files
    • Disk usage & Cleanup
    • Quality Assurance & Statistics
      • Practical applications of statistics
    • Operations with Data
      • Data Filtration
        • How to use advanced filters
      • Pipelines
      • Augmentations
      • Splitting data
      • Converting data
        • Convert to COCO
        • Convert to YOLO
        • Convert to Pascal VOC
    • Data Commander
      • Clone Project Meta
  • 📝Labeling
    • Labeling Toolboxes
      • Images
      • Videos 2.0
      • Videos 3.0
      • 3D Point Clouds
      • DICOM
      • Multiview images
      • Fisheye
    • Labeling Tools
      • Navigation & Selection Tools
      • Point Tool
      • Bounding Box (Rectangle) Tool
      • Polyline Tool
      • Polygon Tool
      • Brush Tool
      • Mask Pen Tool
      • Smart Tool
      • Graph (Keypoints) Tool
      • Frame-based tagging
    • Labeling Jobs
      • Labeling Queues
      • Labeling Consensus
      • Labeling Statistics
    • Labeling Performance
    • Labeling with AI-Assistance
  • 🤝Collaboration
    • Admin panel
      • Users management
      • Teams management
      • Server disk usage
      • Server trash bin
      • Server cleanup
      • Server stats and errors
    • Teams & workspaces
    • Members
    • Issues
    • Guides & exams
    • Activity log
    • Sharing
  • 🖥️Agents
    • Installation
      • Linux
      • Windows
      • AMI AWS
      • Kubernetes
    • How agents work
    • Restart and delete agents
    • Status and monitoring
    • Storage and cleanup
    • Integration with Docker
  • 🔮Neural Networks
    • Overview
    • Inference & Deployment
      • Overview
      • Supervisely Serving Apps
      • Deploy & Predict with Supervisely SDK
      • Using trained models outside of Supervisely
    • Model Evaluation Benchmark
      • Object Detection
      • Instance Segmentation
      • Semantic Segmentation
      • Custom Benchmark Integration
    • Custom Model Integration
      • Overview
      • Custom Inference
      • Custom Training
    • Legacy
      • Starting with Neural Networks
      • Train custom Neural Networks
      • Run pre-trained models
  • 👔Enterprise Edition
    • Get Supervisely
      • Installation
      • Post-installation
      • Upgrade
      • License Update
    • Kubernetes
      • Overview
      • Installation
      • Connect cluster
    • Advanced Tuning
      • HTTPS
      • Remote Storage
      • Single Sign-On (SSO)
      • CDN
      • Notifications
      • Moving Instance
      • Generating Troubleshoot Archive
      • Storage Cleanup
      • Private Apps
      • Data Folder
      • Firewall
      • HTTP Proxy
      • Offline usage
      • Multi-disk usage
      • Managed Postgres
      • Scalability Tuning
  • 🔧Customization and Integration
    • Supervisely .JSON Format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Tags
      • Objects
      • Single-Image Annotation
      • Single-Video Annotation
      • Point Cloud Episodes
      • Volumes Annotation
    • Developer Portal
    • SDK
    • API
  • 💡Resources
    • Changelog
    • GitHub
    • Blog
    • Ecosystem
Powered by GitBook
On this page
  • Overview
  • Format description
  • Input files structure
  • Useful links

Was this helpful?

  1. Import and Export
  2. Import
  3. Supported annotation formats
  4. Images

Pascal VOC

PreviousYoloNextCityscapes

Last updated 10 months ago

Was this helpful?

Overview

The Pascal VOC (Visual Object Classes) format stands as one of the benchmarks established relatively early for object classification, segmentation and detection. It furnishes a standardized dataset for identifying object classes, utilizing an XML-based export format that enjoys widespread adoption in computer vision tasks. This converter converts Pascal VOC format to Supervisely format. Learn more how to prepare data in Pascal VOC format and how to import the original Pascal VOC dataset in the app.

Format description

Supported image formats: .jpg, .jpeg, .mpo, .bmp, .png, .webp, .tiff, .tif, .jfif, .avif, .heic, and .heif With annotations: Yes Supported annotation files extensions: .xml (bounding boxes), .png (segmentation masks) Grouped by: Any structure (will be uploaded as a single dataset)

Input files structure

Example data:

Pascal VOC archive or directory must have the following structure:

  📦custom_pascal.tar                    📂custom_pascal_project_dir
   ┗ 📂VOCdevkit                          ┗ 📂VOCdevkit
      ┗ 📂VOC or VOC2012                     ┗ 📂VOC or VOC2012
         ┣ 📂Annotations                        ┣ 📂Annotations
         ┣ 📂ImageSets                          ┣ 📂ImageSets
         ┃  ┣ 📂Mainn                           ┃  ┣ 📂Main
         ┃  ┗ 📂Segmentation                    ┃  ┗ 📂Segmentation
         ┣ 📂JPEGImage                          ┣ 📂JPEGImages
         ┣ 📂SegmentationClasss                 ┣ 📂SegmentationClass
         ┣ 📂SegmentationObject                 ┣ 📂SegmentationObject
         ┗ 📜colors.txt                         ┗ 📜colors.txt

colors.txt file is custom, and not provided in the original Pascal VOC Dataset. File contains information about instance mask colors associated with classes in Pascal VOC format. This file is required by this app, if you are uploading custom dataset. Each line of colors.txt file starts with class_name and ends with RGB values that represent class color.

colors.txt example:

neutral 224 224 192
kiwi 255 0 0
lemon 81 198 170

Action and Layout Classification Image Sets are not supported by import application.

Useful links

🔁
Import Pascal VOC
download ⬇️
The PASCAL Visual Object Classes Homepage
Pascal VOC Ground Truth Annotation
[Supervisely Ecosystem] Import Pascal VOC