Supervisely
AboutAPI ReferenceSDK Reference
  • 🤖What's Supervisely
  • 🚀Ecosystem of Supervisely Apps
  • 💡FAQ
  • 📌Getting started
    • How to import
    • How to annotate
    • How to invite team members
    • How to connect agents
    • How to train models
  • 🔁Import and Export
    • Import
      • Overview
      • Import using Web UI
      • Supported annotation formats
        • Images
          • 🤖Supervisely JSON
          • 🤖Supervisely Blob
          • COCO
          • Yolo
          • Pascal VOC
          • Cityscapes
          • Images with PNG masks
          • Links from CSV, TXT and TSV
          • PDF files to images
          • Multiview images
          • Multispectral images
          • Medical 2D images
          • LabelMe
          • LabelStudio
          • Fisheye
          • High Color Depth
        • Videos
          • Supervisely
        • Pointclouds
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 3D
        • Pointcloud Episodes
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 360
        • Volumes
          • Supervisely
          • .NRRD, .DCM volumes
          • NIfTI
      • Import sample dataset
      • Import into an existing dataset
      • Import using Team Files
      • Import from Cloud
      • Import using API & SDK
      • Import using agent
    • Migrations
      • Roboflow to Supervisely
      • Labelbox to Supervisely
      • V7 to Supervisely
      • CVAT to Supervisely
    • Export
  • 📂Data Organization
    • Core concepts
    • MLOps Workflow
    • Projects
      • Datasets
      • Definitions
      • Collections
    • Team Files
    • Disk usage & Cleanup
    • Quality Assurance & Statistics
      • Practical applications of statistics
    • Operations with Data
      • Data Filtration
        • How to use advanced filters
      • Pipelines
      • Augmentations
      • Splitting data
      • Converting data
        • Convert to COCO
        • Convert to YOLO
        • Convert to Pascal VOC
    • Data Commander
      • Clone Project Meta
  • 📝Labeling
    • Labeling Toolboxes
      • Images
      • Videos 2.0
      • Videos 3.0
      • 3D Point Clouds
      • DICOM
      • Multiview images
      • Fisheye
    • Labeling Tools
      • Navigation & Selection Tools
      • Point Tool
      • Bounding Box (Rectangle) Tool
      • Polyline Tool
      • Polygon Tool
      • Brush Tool
      • Mask Pen Tool
      • Smart Tool
      • Graph (Keypoints) Tool
      • Frame-based tagging
    • Labeling Jobs
      • Labeling Queues
      • Labeling Consensus
      • Labeling Statistics
    • Labeling with AI-Assistance
  • 🤝Collaboration
    • Admin panel
      • Users management
      • Teams management
      • Server disk usage
      • Server trash bin
      • Server cleanup
      • Server stats and errors
    • Teams & workspaces
    • Members
    • Issues
    • Guides & exams
    • Activity log
    • Sharing
  • 🖥️Agents
    • Installation
      • Linux
      • Windows
      • AMI AWS
      • Kubernetes
    • How agents work
    • Restart and delete agents
    • Status and monitoring
    • Storage and cleanup
    • Integration with Docker
  • 🔮Neural Networks
    • Overview
    • Inference & Deployment
      • Overview
      • Supervisely Serving Apps
      • Deploy & Predict with Supervisely SDK
      • Using trained models outside of Supervisely
    • Model Evaluation Benchmark
      • Object Detection
      • Instance Segmentation
      • Semantic Segmentation
      • Custom Benchmark Integration
    • Custom Model Integration
      • Overview
      • Custom Inference
      • Custom Training
    • Legacy
      • Starting with Neural Networks
      • Train custom Neural Networks
      • Run pre-trained models
  • 👔Enterprise Edition
    • Get Supervisely
      • Installation
      • Post-installation
      • Upgrade
      • License Update
    • Kubernetes
      • Overview
      • Installation
      • Connect cluster
    • Advanced Tuning
      • HTTPS
      • Remote Storage
      • Single Sign-On (SSO)
      • CDN
      • Notifications
      • Moving Instance
      • Generating Troubleshoot Archive
      • Storage Cleanup
      • Private Apps
      • Data Folder
      • Firewall
      • HTTP Proxy
      • Offline usage
      • Multi-disk usage
      • Managed Postgres
      • Scalability Tuning
  • 🔧Customization and Integration
    • Supervisely .JSON Format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Tags
      • Objects
      • Single-Image Annotation
      • Single-Video Annotation
      • Point Cloud Episodes
      • Volumes Annotation
    • Developer Portal
    • SDK
    • API
  • 💡Resources
    • Changelog
    • GitHub
    • Blog
    • Ecosystem
Powered by GitBook
On this page
  • Overview
  • Format description
  • Input files structure
  • Single-Image Annotation JSON
  • Useful links

Was this helpful?

  1. Import and Export
  2. Import
  3. Supported annotation formats
  4. Images

LabelStudio

PreviousLabelMeNextFisheye

Last updated 3 months ago

Was this helpful?

Overview

This converter allows to import images with .json annotations in format. Supported LabelStuidio format geometry types: polygonlabels (polygon), rectanglelabels (rectangle), brushlabels (RLE masks), and choices (tags)

Format description

Supported image formats: .jpg, .jpeg, .mpo, .bmp, .png, .webp, .tiff, .tif, .jfif, .avif, .heic, and .heif With annotations: yes Supported annotation file extension: .json. Grouped by: Any structure (will be uploaded as a single dataset)\

Input files structure

⚠️ Note: image names should correspond to the names in the annotation files (data > image field in the JSON file).

Example directory structure:

  📦input_folder
   ┣ 📂ann
   ┃  ┣ 📄annotation_1.json
   ┃  ┗ 📄annotation_4.json
   ┗ 📂img
      ┣ 🏞️IMG_0748.jpeg
      ┗ 🏞️IMG_8144.jpeg

Single-Image Annotation JSON

An annotation file should contain the following fields:

  • annotations or predictions - a list of dictionaries, each containing annotation for single image

    • result - list of dictionaries, each containing information about the objects

      • original_width - the width of the original image

      • original_height - the height of the original image

      • value - a dictionary containing information about the object

        • polygonlabels/rectanglelabels/brushlabels/choices - field with the object class name

        • points - a list of points of the object (for polygonlabels and rectanglelabels shape types)

        • rle and format - a base64 encoded mask of the object (for mask shape type)

      • type - the type of the object (one of the following: polygonlabels, rectanglelabels, brushlabels, choices, relation)

  • data - a dictionary containing information about the image

    • image - the path to the image

Example of the annotation file:

📄 annotation_1.json
[
  {
    "id": 13,
    "annotations": [
      {
        "id": 7,
        "completed_by": 1,
        "result": [
          {
            "original_width": 1280,
            "original_height": 853,
            "image_rotation": 0,
            "value": {
              "x": 14.107390372983872,
              "y": 15.524193548387096,
              "width": 61.535093245967744,
              "height": 70.36290322580646,
              "rotation": 0,
              "rectanglelabels": ["Airplane"]
            },
            "id": "eGEJdycmv3",
            "from_name": "label",
            "to_name": "image",
            "type": "rectanglelabels",
            "origin": "manual"
          }
        ],
        "was_cancelled": false,
        "ground_truth": false,
        "created_at": "2024-07-05T13:18:24.130642Z",
        "updated_at": "2024-07-05T13:18:24.130665Z",
        "draft_created_at": null,
        "lead_time": 7.935,
        "prediction": {},
        "result_count": 0,
        "unique_id": "f527f9c8-affe-469b-991a-70ec6fd79e54",
        "import_id": null,
        "last_action": null,
        "task": 13,
        "project": 8,
        "updated_by": 1,
        "parent_prediction": null,
        "parent_annotation": null,
        "last_created_by": null
      }
    ],
    "file_upload": "airplane.jpg",
    "drafts": [],
    "predictions": [],
    "data": {
      "image": "/data/upload/8/airplane.jpg"
    },
    "meta": {},
    "created_at": "2024-07-05T13:18:14.329289Z",
    "updated_at": "2024-07-05T13:18:24.152845Z",
    "inner_id": 1,
    "total_annotations": 1,
    "cancelled_annotations": 0,
    "total_predictions": 0,
    "comment_count": 0,
    "unresolved_comment_count": 0,
    "last_comment_updated_at": null,
    "project": 8,
    "updated_by": 1,
    "comment_authors": []
  }
]

Useful links

Example data:

🔁
download ⬇️
LabelStudio GitHub page
LabelStudio website
LabelStudio
Result of the import