Supervisely
AboutAPI ReferenceSDK Reference
  • 🤖What's Supervisely
  • 🚀Ecosystem of Supervisely Apps
  • 💡FAQ
  • 📌Getting started
    • How to import
    • How to annotate
    • How to invite team members
    • How to connect agents
    • How to train models
  • 🔁Import and Export
    • Import
      • Overview
      • Import using Web UI
      • Supported annotation formats
        • Images
          • 🤖Supervisely JSON
          • 🤖Supervisely Blob
          • COCO
          • Yolo
          • Pascal VOC
          • Cityscapes
          • Images with PNG masks
          • Links from CSV, TXT and TSV
          • PDF files to images
          • Multiview images
          • Multispectral images
          • Medical 2D images
          • LabelMe
          • LabelStudio
          • Fisheye
          • High Color Depth
        • Videos
          • Supervisely
        • Pointclouds
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 3D
        • Pointcloud Episodes
          • Supervisely
          • .PCD, .PLY, .LAS, .LAZ pointclouds
          • Lyft
          • nuScenes
          • KITTI 360
        • Volumes
          • Supervisely
          • .NRRD, .DCM volumes
          • NIfTI
      • Import sample dataset
      • Import into an existing dataset
      • Import using Team Files
      • Import from Cloud
      • Import using API & SDK
      • Import using agent
    • Migrations
      • Roboflow to Supervisely
      • Labelbox to Supervisely
      • V7 to Supervisely
      • CVAT to Supervisely
    • Export
  • 📂Data Organization
    • Core concepts
    • MLOps Workflow
    • Projects
      • Datasets
      • Definitions
      • Collections
    • Team Files
    • Disk usage & Cleanup
    • Quality Assurance & Statistics
      • Practical applications of statistics
    • Operations with Data
      • Data Filtration
        • How to use advanced filters
      • Pipelines
      • Augmentations
      • Splitting data
      • Converting data
        • Convert to COCO
        • Convert to YOLO
        • Convert to Pascal VOC
    • Data Commander
      • Clone Project Meta
  • 📝Labeling
    • Labeling Toolboxes
      • Images
      • Videos 2.0
      • Videos 3.0
      • 3D Point Clouds
      • DICOM
      • Multiview images
      • Fisheye
    • Labeling Tools
      • Navigation & Selection Tools
      • Point Tool
      • Bounding Box (Rectangle) Tool
      • Polyline Tool
      • Polygon Tool
      • Brush Tool
      • Mask Pen Tool
      • Smart Tool
      • Graph (Keypoints) Tool
      • Frame-based tagging
    • Labeling Jobs
      • Labeling Queues
      • Labeling Consensus
      • Labeling Statistics
    • Labeling with AI-Assistance
  • 🤝Collaboration
    • Admin panel
      • Users management
      • Teams management
      • Server disk usage
      • Server trash bin
      • Server cleanup
      • Server stats and errors
    • Teams & workspaces
    • Members
    • Issues
    • Guides & exams
    • Activity log
    • Sharing
  • 🖥️Agents
    • Installation
      • Linux
      • Windows
      • AMI AWS
      • Kubernetes
    • How agents work
    • Restart and delete agents
    • Status and monitoring
    • Storage and cleanup
    • Integration with Docker
  • 🔮Neural Networks
    • Overview
    • Inference & Deployment
      • Overview
      • Supervisely Serving Apps
      • Deploy & Predict with Supervisely SDK
      • Using trained models outside of Supervisely
    • Model Evaluation Benchmark
      • Object Detection
      • Instance Segmentation
      • Semantic Segmentation
      • Custom Benchmark Integration
    • Custom Model Integration
      • Overview
      • Custom Inference
      • Custom Training
    • Legacy
      • Starting with Neural Networks
      • Train custom Neural Networks
      • Run pre-trained models
  • 👔Enterprise Edition
    • Get Supervisely
      • Installation
      • Post-installation
      • Upgrade
      • License Update
    • Kubernetes
      • Overview
      • Installation
      • Connect cluster
    • Advanced Tuning
      • HTTPS
      • Remote Storage
      • Single Sign-On (SSO)
      • CDN
      • Notifications
      • Moving Instance
      • Generating Troubleshoot Archive
      • Storage Cleanup
      • Private Apps
      • Data Folder
      • Firewall
      • HTTP Proxy
      • Offline usage
      • Multi-disk usage
      • Managed Postgres
      • Scalability Tuning
  • 🔧Customization and Integration
    • Supervisely .JSON Format
      • Project Structure
      • Project Meta: Classes, Tags, Settings
      • Tags
      • Objects
      • Single-Image Annotation
      • Single-Video Annotation
      • Point Cloud Episodes
      • Volumes Annotation
    • Developer Portal
    • SDK
    • API
  • 💡Resources
    • Changelog
    • GitHub
    • Blog
    • Ecosystem
Powered by GitBook
On this page
  • Overview
  • Format description
  • Input files structure
  • Single-Image Annotation JSON
  • Useful links

Was this helpful?

  1. 🔁Import and Export
  2. Import
  3. Supported annotation formats
  4. Images

LabelMe

PreviousMedical 2D imagesNextLabelStudio

Last updated 3 months ago

Was this helpful?

Overview

This converter allows to import images with .json annotations in LabelMe format. Supported LabelMe format geometry types: polygon, rectangle, circle, point, linestring, mask, line.

Format description

Supported image formats: .jpg, .jpeg, .mpo, .bmp, .png, .webp, .tiff, .tif, .jfif, .avif, .heic, and .heif With annotations: yes Supported annotation file extension: .json. Grouped by: Any structure (will be uploaded as a single dataset)\

Input files structure

Example data: download ⬇️

Example directory structure:

  📦input_folder
   ┣ 📂ann
   ┃  ┣ 📄IMG_0748.json
   ┃  ┗ 📄IMG_8144.json
   ┗ 📂img
      ┣ 🏞️IMG_0748.jpeg
      ┗ 🏞️IMG_8144.jpeg

Single-Image Annotation JSON

An annotation file should contain the following fields:

  • shapes - a list of dictionaries, each containing information about the object

    • label - the name of the class

    • points - a list of points of the object

    • mask - a base64 encoded mask of the object (for mask shape type)

    • shape_type - the type of the object (one of the following: polygon, rectangle, circle, point, linestring, mask, line)

  • imageHeight - the height of the image

  • imageWidth - the width of the image

Example of the annotation file:

📄IMG_0748.json
{
  "version": "5.5.0",
  "flags": {},
  "shapes": [
    {
      "label": "cat_polygon",
      "points": [
        [1038.0000000000002, 91.00000000000023],
        [2363.0, 1311.0000000000002],
        [2373.0, 3236.0]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "polygon",
      "flags": {},
      "mask": null
    },
    {
      "label": "cat_rectangle",
      "points": [
        [1033.0000000000002, 76.00000000000023],
        [2368.0, 1311.0000000000002]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "rectangle",
      "flags": {},
      "mask": null
    },
    {
      "label": "cat_circle",
      "points": [
        [1123.0000000000002, 361.0000000000002],
        [1123.0000000000002, 631.0000000000002]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "circle",
      "flags": {},
      "mask": null
    },
    {
      "label": "cat_line",
      "points": [
        [1043.0000000000002, 106.00000000000023],
        [1153.0000000000002, 3251.0]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "line",
      "flags": {},
      "mask": null
    },
    {
      "label": "cat_point",
      "points": [[1038.0000000000002, 101.00000000000023]],
      "group_id": null,
      "description": "",
      "shape_type": "point",
      "flags": {},
      "mask": null
    },
    {
      "label": "cat_polyline",
      "points": [
        [1053.0000000000002, 96.00000000000023],
        [2373.0, 1291.0000000000002],
        [1148.0000000000002, 2171.0],
        [2393.0, 3246.0],
        [2393.0, 3246.0],
        [2393.0, 3246.0]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "linestrip",
      "flags": {},
      "mask": null
    },
    {
      "label": "cat_ai_mask",
      "points": [
        [946.0, 847.0],
        [1665.0, 1346.0]
      ],
      "group_id": null,
      "description": "",
      "shape_type": "mask",
      "flags": {},
      "mask": "iVBORw0KGgoAAAANSU ... ElFTkSuQmCC"
    }
  ],
  "imagePath": "IMG_5853 2.jpg",
  "imageData": "/9j/4AAQSkZJRgAB ...dg+9FFFIo//Z",
  "imageHeight": 3382,
  "imageWidth": 2536
}

Useful links

  • LabelMe page

Result of the import